Tuesday, 31 March 2020

SLEEP PRESSURE AND CAFFEINE

 Your twenty-four-hour circadian rhythm is the first of the two factors determining wake and sleep. The second is sleep pressure. At this very moment, a chemical called adenosine is building up in your brain. It will continue to increase in concentration with every waking minute that elapses. The longer you are awake, the more adenosine will accumulate. Think of adenosine as a chemical barometer that continuously registers the amount of elapsed time since you woke up this morning. One consequence of increasing adenosine in the brain is an increasing desire to sleep. This is known as sleep pressure, and it is the second force that will determine when you feel sleepy, and thus should go to bed. Using a clever dual-action effect, high concentrations of adenosine simultaneously turn down the “volume” of wake-promoting regions in the brain and turn up the dial on sleep-inducing regions. As a result of that chemical sleep pressure, when adenosine concentrations peak, an irresistible urge for slumber will take hold.VII It happens to most people after twelve to sixteen hours of being awake. You can, however, artificially mute the sleep signal of adenosine by using a chemical that makes you feel more alert and awake: caffeine. Caffeine is not a food supplement. Rather, caffeine is the most widely used (and abused) psychoactive stimulant in the world. It is the second most traded commodity on the planet, after oil. The consumption of caffeine represents one of the longest and largest unsupervised drug studies ever conducted on the human race, perhaps rivaled only by alcohol, and it continues to this day. Caffeine works by successfully battling with adenosine for the privilege of latching on to adenosine welcome sites—or receptors—in the brain. Once caffeine occupies these receptors, however, it does not stimulate them like adenosine, making you sleepy. Rather, caffeine blocks and effectively inactivates the receptors, acting as a masking agent. It’s the equivalent of sticking your fingers in your ears to shut out a sound. By hijacking and occupying these receptors, caffeine blocks the sleepiness signal normally communicated to the brain by adenosine. The upshot: caffeine tricks you into feeling alert and awake, despite the high levels of adenosine that would otherwise seduce you into sleep. 

No comments:

Post a Comment